

Future opzioni terapeutiche per la porpora trombocitopenica immune: una terapia per tutti?

Monica Carpenedo

UOC Ematologia ASST Fatebenefratelli-Sacco Ospedale L. Sacco Polo Didattico Università degli Studi di Milano Milano

Avellino, Hotel de la Ville March 30-31, 2023

Disclosures Monica Carpenedo

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Amgen					x	x	
Argenx						x	
Grifols					x	x	
Novartis					x	x	
Sanofi					x		
Sobi					x		

ITP: unresolved issues

- » How to increase first line response
- » How to achieve a stable response after first line failure/relapse
- » How to manage multirefractory patients

ITP: unresolved issues

- » How to increase first line response
- » How to achieve a stable response after first line failure/relapse
- » How to manage multirefractory patients

Streght and limitation of current First Line Therapy in ITP

- » STRENHGTS
- ✓ Availability
- ✓ Cost
- Rapid response in most patient

- » LIMITATION
- ✓ Side effects
- Low % of stable & long term response (20-30%)

MMF + steroid as First Line Therapy in ITP: the FLIGHT Trial

Prednisone 1 mg/kg x 4 days, 40 mg/d x 2 wks, 20 mg/d x 2 wk, 10 mg x 2 wk, 5 mg/d x 2 wks, 5 mg EOD x 2 wks

OR

Dexamethasone 40 mg/d x 4 days x n pulses (at the discretion of clinician)

+/- (random open label)

MMF 500 mg BID x 2 wks -- > 1gr BID x 6 months -> taper and stop if CR or lowest dose to keep safe plt count Newly ITP, no previous tx

12 months observation

Primary end point: treatment failure (plt < 30 x 10 ⁹/L and or need of 2 nd line

Data on QoL

Bradbury C et al , NEJM 2021

Primary and point: failure of 1st line

N= 120 pts

44 failure: 13 (22%) in MMF + steroid 27 (44%) in steroid alone

HR 0.41 (95%Cl, 0.21- 0.80) P=0.008

More fatigue in MMF group

Bradbury C et al , NEJM 2021

Variable	Mycophenolate Mofetil plus Glucocorticoid (N = 59)	Glucocorticoid Only (N = 61)	Relative Risk Ratio (95% CI)
Platelet level >30×10 ⁹ /liter and twice the level at baseline within 2 weeks after randomization — no. (%)	30 (50.8)	29 (47.5)	1.06 (0.74–1.54)
Platelet level >100×109/liter within 2 weeks after randomization — no. (%)	21 (35.6)	21 (34.4)	1.04 (0.63-1.68)
Platelet level >30×10 ⁹ /liter and twice the level at baseline in response to first-line treatment — no. (%)	55 (93.2)	46 (75.4)	1.23 (1.05–1.45)
Platelets >100×10 ⁹ /liter in response to first-line treatment — no. (%)	54 (91.5)	39 (63.9)	1.43 (1.17-1.76)
Patients with disease refractory to first-line treatment — no. (%)	4 (6.8)	15 (24.6)	
Median time to platelet level of >30×10 ⁹ /liter and twice the level at baseline (IQR) — days†‡	14 (6–57)	18 (5–55)	
Median time to platelet level of >100×10 ⁹ /liter (IQR) — days†§	38 (6-65)	46 (6-58)	
Treatment side effects — no. (%)			
Infection	14 (23.7)	14 (23.0)	
Weight gain	17 (28.8)	21 (34.4)	
Neutropenia	0	4 (6.6)	
Difficulty sleeping	12 (20.3)	17 (27.9)	
Mood change or psychiatric disorder	18 (30.5)	21 (34.4)	
Steroid-induced diabetes	1 (1.7)	2 (3.3)	
Steroid-induced hypertension	2 (3.4)	2 (3.3)	
Diarrhea or other gastrointestinal symptom	20 (33.9)	15 (24.6)	
Patients with bleeding episode — no. (%)	14 (23.7)	15 (24.6)	

More on other combo tx as first line

- » Oseltamivir (sialidase inhibitor): phase 2 trial (NCT01965626):
- Dexa <u>+</u> O: at day 14 Response 86 vs. 66%; OR 3.18; P = 0.030); at 6 months 53 vs. 30%; OR 2.17; P = 0.032); at 10 months similar response in the 2 groups
- » Dexa <u>+</u> ATRA (China): OR @6 mo 3.1; p=0.0017 (68% vs 41%); no longer follow up
- » Coming soon in Milan: **RODEX Study** (EudraCT No.: 2021-006970-22):
- A multicentre, randomized, open-label study of romiplostim plus dexamethasone vs dexamethasone in patients with newly diagnosed primary immune thrombocytopenia

ITP: unresolved issues

- » How to increase first line response
- » How to achieve a stable response after first line failure/relapse
- » How to manage multirefractory patients

Already available drugs

Avatrombopag

Fostamatinib

- Fostamatinib is a small molecule prodrug
- Its major active metabolite R406 is a potent and relatively selective, orally available inhibitor of Syk
- R406 reduces macrophage destruction of opsonized platelet and inhibits signal transduction of B-cell receptors

Main efficacy results of FIT studies (randomized vs placebo, dose finding)

Allowed concomitant azathioprin, steroid < 20 mg prednison or danazol

	FIT-1 (N=	=76)	FIT-2 $(N = 74)$	
	Fostamatinib $(N=51)$	Placebo ($N=25$)	Fostamatinib $(N=50)$	Placebo ($N = 24$)
Outcomes n (%)				
Stable platelet response (primary outcome)	9 (18)	0(0)P = 0.03	8 (16)	1(4)P = NS
*Overall response	19 (37)	2 (8) P < 0.01	24 (48)	5(21)P < = 0.05
Rolled over into FIT-3 at week 12	28 (55)	22 (88)	33 (66)	19 (79)
Completed 24 24-week study	12 (24)	1(4)	13 (26)	2 (8)

*Post hoc analysis for overall response (one or more platelet count $\geq 50 \times 10^{9}$ /L during weeks 0–12) in FIT-1 and FIT-2. Pooling the two studies 43% of patients on fostamatinib vs. 14% on placebo (*P*=0.0006) reached overall response, data derived from Bussel et al. [17]

Safety data in FIT studies

Relevant common (≥5% of cases) adverse reactions occurring at higher rate or increased severity compared to placebo in a pooled analysis of exposed patients in FIT-1 and FIT-2

Adverse reactions (%)	Fostamatinib $N = 102$			Placebo N=48		
	Mild (%)	Moderate (%)	Severe (%)	Mild (%)	Moderate (%)	Severe (%)
Diarrhea	21	10	1	13	2	0
Hypertension ^{&}	17	9	2	10	0	2
Dizziness	8	2	1	6	2	0
Chest pain	2	3	1	2	0	0
Neutropenia ^{\$}	3	2	1	0	0	0
ALT and/or AST elevation*	> 3-<5×ULN (%) 1	> 5-<10 × ULN (%) 5	> 10×ULN (%) 1	> 3-<5×ULN (%) 0	>5-<10×ULN (%)0	>10×ULN(%)0

& Hypertensive crisis in 1% of patients; febrile neutropenia in 1%; alanine aminotransferase (ALT) and/or aspartate aminotransferase (AST) elevation above 3 to 10 × upper limit of normal (ULN)

4 fatal AEs (pneumonia, sepsis, plasma cell myeloma and endocarditis), none considered by the investigator to be related to treatment

Efficacy of fostamatinib is related to n of previous therapies

Boccia R et al, BJH 2020

Fig 1. Response rate and durability of response in patients receiving fostamatinib as second-line, third-line, fourth-line, or fifth-line therapy. (A) Response, defined as ≥ 1 platelet count $\geq 50\ 000/\mu l$ (dark blue) or $\geq 30\ 000/\mu l$ (light blue) at any visit (not within 4 weeks of rescue therapy). (B) Durability of response; median percent of treatment days that patients maintained a response of $\geq 50\ 000/\mu l$ (dark blue) or $\geq 30\ 000/\mu l$ (light blue), with loss of response at the first of two platelet counts $< 30\ 000/\mu l$ or $< 20\ 000/\mu l$, respectively, at least four weeks apart or use of rescue therapy. Thirty patients who received fostamatinib as sixth-line to tenth-line therapy are not shown. [Colour figure can be viewed at wileyonline library.com]

Thrombotic risk of fostamatinib

 Table 1. Baseline patient characteristics and risk factors for thromboembolic events (TEEs).

Baseline characteristics	All patients N = 146
Patients with ≥ 1 risk factor for TEE, <i>n</i> (%)	127 (87)
Patients with multiple risk factors for TEE, n (%)	85 (58)
Number of TEE risk factors, median (range)	2 (0–7)
Age ≥65years, n (%)ª	37 (25)
Body mass index ≥30 (%)	43 (29)
Medical history	
Diabetes (%)	15 (10)
Cancer ^b (%)	7 (5)
Cardiovascular disease, excluding hypertension (%)	37 (25)
Hypertension (%)	51 (35)
Prior ITP treatments	
Splenectomy (%)	51 (35)

Despite TEE risk factors in many of the 146 patients treated with fostamatinib for up to 5 years with **229 patient-years total**, only one minor **(0.7%) TEE** was observed*.

TEE risk in TPO-RA:

- 2.7 per 100 pts-yrs eltrombopag
- 3.1-3.9 per 100 pts-yrs romiplostim

* 1 mild TIA

Cooper N et al, Ther Adv Hematol 2021

Case report

Sustained response off therapy after fostamatinib: A chronic refractory ITP case report

Heliyon, 2023,

Giuseppe Auteri^{a, b, *}, Mattia Biondo^{a, b}, Camilla Mazzoni^{a, b}, Marta Venturi^{a, b}, Andrea Davide Romagnoli^{a, b}, Simona Paglia^a, Michele Cavo^{a, b}, Nicola Vianelli^a, Francesca Palandri^a

bjh short report

Long-term sustained response to fostamatinib in two patients with chronic refractory immune thrombocytopenia (ITP)

Lee et al , BJH 2020

Avatrombopag

- Avatrombopag stimulated megakaryocyte colony formation in a concentration-dependent fashion in human cord blood CD34+ cells
- The combination of avatrombopag plus rhTPO resulted in an increase greater than either avatrombopag or rhTPO alone
- » No food restriction

IST SYMPOSIUM ON INNOVATIVE THERAPIES IN HEMATOLOGY Avatrombopag: phase 3 study

Primary endpoint	• Cumulative number of weeks of platelet response (defined as platelet count ≥50 × 10°/L) during 6 months of treatment in the absence of rescue therapy
Secondary / exploratory endpoints	 Platelet response at day 8 Proportion of patients with reduction in concomitant ITP medications from baseline
Additional endpoint of interest	 Durable platelet response (defined as proportion of patients in the last 8 weeks (weeks 18–26) of 6-month treatment period with ≥6 weekly platelet counts ≥50 × 10⁹/L)
Safety / tolerability	 Evaluate the safety and tolerability of long-term therapy with avatrombopag in participants with chronic ITP Severity of AEs were graded by the investigator using the CTCAE

Jurczak W et al , BJH 2018

Extension study efficacy¹

- Overall platelet response in the core study was generally maintained throughout the extension up until ~Week 36
- Beyond Week 38, platelet response was noted to be lower and more variable*

Subjects	AVATROMBOPAG 32	PLACEBO 17	p value
PRIMARY: cumulative number of weeks of platelet response	12.4	0.0	p<0.0001
SECONDARY: responders to avatrombopag on Day 8, (%)	65.5	0	p<0.001
SECONDARY: Proportion of patients with reduction in concomitant ITP medications from baseline, (%)	33.3	0	P=0.1348
Durable platelet response (defined as proportion of patients in the last 8 weeks (weeks 18–26) of 6-month treatment period with ≥6 weekly platelet counts ≥50 × 10 ⁹ /L), (%)	34.4	0	P = 0.009
18			

Jurczak W et al , BJH 2018

Avatrombopag: data of interest

More than half (57.1%) of patients on chronic corticosteroids reduced or discontinued corticosteroids

Incidence of bleeding events during 6-month treatment	Placebo (N=17)	Avatrombopag (N=32)
Yes, n (%)	9 (52.9)	14 (43.8)
No, n (%)	8 (47.1)	18 (56.3)
P-value	0.5	394

- All bleeding events were WHO Grade 1, except for three patients in the avatrombopag treatment group who experienced Grade 2 (N=2) or Grade 3 (N=1) bleeding events
 - o The WHO Grade 3 bleeding event (epistaxis) was also reported as an AE of special interest

*

*

IST SYMPOSIUM ON INNOVATIVE THERAPIES IN HEMATOLOGY

Safety profile of clinical trials for avatrombopag in chronic ITP

Authors	Study	Patients with grade 3-4 TEAE	Patients with SAE	Patients requiring discontinuation	Thromboembolic events
Bussel et al <i>(Blood 2014)</i>	Phase II trial (n = 64)	26 (40.6%)	12 (18.8%)	10 (15.6%)	4 (6.3%): iliac DVT, stroke, superficial thrombosis, MI + retinal artery occlusion
Jurczak et al (BJH 2018)	Phase III trial (n = 32)	6 (18.8%) vs 0 (0% placebo)	9 (28.1%) vs 1 (5.9% placebo)	3 (9.4%)	3 (9.4%: DVT, PE, stroke) + 1 jugular vein thrombosis

TAEA: treatment-emergent adverse event; SAE: serious adverse event, DVT: deep vein thrombosys; PE: pulmonary embolism; MI: Myocardial infarction

Avatrombopag in real life

- Multicentre, observational study of consecutive adult patients with ITP who switched from eltrombopag or romiplostim to avatrombopag for any reason between July 2019 and December 2020. Data were collected retrospectively
 - Patients ≥18 years of age with a diagnosis of primary or secondary ITP were included if they had been on **avatrombopag treatment for at least two months** with no more than a one-month gap between stopping eltrombopag or romiplostim and starting avatrombopag.

Baseline characteristics	Total population	Effectiveness	Convenience	Adverse event
Total patients	N = 44	<i>n</i> = 14	<i>n</i> = 23	<i>n</i> = 7
Male, <i>n</i> (%)	21 (48)	9 (64)	9 (39)	3 (43)
White, <i>n</i> (%)	30 (68)	10 (71)	15 (65)	5 (71)
Primary ITP, n (%)	25 (57)	7 (50)	13 (57)	5 (71)
Age				
Median (range), years	61 (21, 87)	66.5 (39, 81)	59 (21, 87)	59 (34, 76)
Duration of ITP until AVA initiation				
Median (range), months	49 (2, 550)	73 (6, 404)	43 (2, 550)	85 (16, 124)
# Unique prior ITP therapies before AVA				
Median (range)	4 (2, 10)	7 (3, 10)	4 (2, 8)	4 (2, 8)
Previous TPO-RA				
Romiplostim, ratio (%)	33 (75)	10 (71)	21 (91)	2 (29)
Eltrombopag, ratio (%)	10 (23)	4 (29)	1 (4)	5 (71)
Romiplostim/eltrombopag, ratio (%)	1 (2)	0 (0)	1 (4)	0 (0)

Abbreviations: AVA, avatrombopag; ITP, immune thrombocytopenia; TPO-RA, thrombopoietin receptor agonist.

Platelet response after switching to avatrombopag from romiplostim or eltrombopag: real word data

Median PC^b, all patients (N=44)

^aPatients requiring rescue therapy had their platelet counts disqualified for the purposes of response assessment for eight weeks (corticosteroids), four weeks [intravenous immunoglobulin (IVIG) or anti-RhD immune globulin], or one week (platelet transfusion) from the time of receipt of rescue therapy.

Median PC^a, patients who switched due to

ITP: unresolved issues

- » How to increase first line response
- » How to achieve a stable response after first line failure/relapse
- » How to manage multirefractory patients

New therapies under developement

Novel therapy	Mechanism of action	Drugs evaluated in ITP*
Anti-CD40 ligand antibody	Reduces production of anti-platelet antibody	IDEC-131, hu5c8, letolizumab
Anti-CD38 antibody	Inhibits plasma cell production of anti-platelet antibody	Mezagitamab (TAK-079), daratumumab
Immunoproteasome inhibitors	Reduce production of anti-platelet antibody	KZR-616
Neonatal Fc receptor (FcRn) inhibitors	Increase clearance of anti-platelet antibody	IVIG, efgartigimod, rozanolixizumab
Staphylococcal Protein A	Inhibits macrophage phagocytosis	PRTX-100
Hypersialylated immunoglobulin G	Blocks macrophage FcR and reduces phagocytosis	M254
Recombinant Fc multimers	Bind macrophage FcR and reduce phagocytosis	PF067553471 (GL-2045), stradomers
Bruton kinase inhibitors	Reduce macrophage function	Rilzabrutinib (PRN1008)
Complement inhibitors	Antibody inhibits C1s activity	Sutimlimab
Platelet desialylation inhibitors	Inhibit platelet neuraminidase activity	Oseltamivir
New TPO receptor agonists	Stimulate megakaryocyte growth	Hetrombopag
Low-level laser light	Prevents megakaryocyte apoptosis	810 nm laser light

ITP, immune thrombocytopenia; IVIG, intravenous immunoglobulin; FcR, Fc receptor; TPO, thrombopoietin.

*For many novel therapies there are other members of the drug class being investigated in other diseases; shown here are those for which ITP has been a focus of research.

New therapies under developement

Complement Inhibitor

Neonatal Fc receptor inhibitors ("medical plasmapheresis")

- » Able to mediate the transfer of IgG between mother and fetus
- » It binds multimeric IgG in the form of immune complexes to dendritic cells
- » Is reponsible for the long circulatory half-lives of IgG and albumin

Normal IgG catabolism

Depletion of IgG by FcRn-targeted strategies

Drugs:

- Efgartigimod
- (Rozanolixizumab)
- Nipocalimab
- IMVT-1401

Efgartigimod Mechanism of Action: Competitive Inhibition of FcRn

- The neonatal Fc receptor (FcRn) recycles immunoglobulin G (IgG), extending its half-life and serum concentration¹
- Efgartigimod is a human IgG1 Fc fragment, a natural ligand of FcRn, engineered for increased affinity for FcRn²
- Efgartigimod was designed to outcompete endogenous IgG, preventing recycling and promoting lysosomal degradation of IgG (without impacting IgG production) leading to²⁻⁵:
 - Targeted reduction of all IgG subtypes
 - No impact on IgM or IgA
 - No reduction in albumin levels
 - No increase in cholesterol
- Efgartigimod is approved for the treatment of generalized myasthenia gravis (gMG) in patients positive for antiacetylcholine receptor (AChR) antibodies in the US and in patients with an insufficient response to steroids or nonsteroid immunosuppressive therapies in Japan

AChR = acetylcholine receptor; FC = crystallizable fragment; FcRn = neonatal Fc receptor; gMG = generalized myasthenia gravis; IgA = immunoglobulin A; IgG = immunoglobulin G; IgM = immunoglobulin M. 1. Sesarman A, et al. *Cell Mol Life Sci.* 2010;67(15):2533-2550. 2. Ulrichts P, et al. *J Clin Invest.* 2018;128(10):4372-4386. 3. Vaccaro C, et al. *Nat Biotech.* 2005;23(10):1283-1288. 4. Howard JF Jr, et al. *Lancet Neurol.* 2021;20(7):526-536. 5. Nixon AE, et al. *Front Immunol.* 2015;6:176.

ADVANCE STUDY

PLENARY ABSTRACTS | NOVEMBER 15, 2022

Efficacy and Safety of Intravenous Efgartigimod in Adults with Primary Immune Thrombocytopenia: Results of a Phase 3, Multicenter, Double-Blinded, Placebo-Controlled, Randomized Clinical Trial (ADVANCE IV)

Catherine M. Broome, Vickie McDonald, Yoshitaka Miyakawa, Monica Carpenedo, David J. Kuter, Hanny Al-Samkari, James B. Bussel, Marie Godar, Jaume Ayguasanosa, Kristof De Beuf, Francesco Rodeghiero, Marc Michel, Adrian C. Newland

Blood (2022) 140 (Supplement 1): 6-8.

ADVANCE IV (NCT04188379): Study Design

Phase 3, Multicenter, Double-blinded, Placebo-controlled, Randomized Clinical Trial

*q2w if $\geq 100 \times 10^{9}/L$ for 3 of 4 visits or $\geq 100 \times 10^{9}/L$ for 3 consecutive visits; weekly if $< 100 \times 10^{9}/L$ on 2 consecutive visits, $< 30 \times 10^{9}/L$ at 1 visit or rescue therapy received. *Concurrent oral corticosteroids, oral immunosuppressants, dapsone, danazol, fostamatinib, and oral thrombopoietin receptor agonists (not romiplostim). q2w = every other week; ITP = immune thrombocytopenia; IV = intravenously.

IST SYMPOSIUM ON INNOVATIVE THERAPIES IN HEMATOLOGY

Baseline Characteristics Indicate the Majority of Participants Had Multiple Prior Therapies and Long-standing ITP

	Efgartigimod [*] (n=86)	Placebo [*] (n=45)
Age, mean, years (SD)	46.9 (16.6)	51.7 (17.9)
Female, n (%)	47 (54.7)	24 (53.3)
Time since diagnosis, mean, years (SD)	10.3 (12.1)	11.1 (13.1)
Patients with chronic / persistent ITP, n	78 / 8	40 / 5
Platelet count, 10 ⁹ /L mean (SD)	17.3 (10.2)	14.2 (9.2)
Patients with history of splenectomy, n (%)	32 (37.2)	17 (37.8)
World Health Organization (WHO) bleeding score, $n (\%)$		
No bleeding	44 (51.2)	16 (35.6)
Grade 1	38 (44.2)	25 (55.6)
≥Grade 2	4 (4.7)	4 (8.9)
Patients with \ge 3 prior ITP therapies, n (%)	59 (68.6)	29 (64.4)
Concurrent ITP therapy types at baseline, n (%)		
Corticosteroids	22 (25.6)	12 (26.7)
Oral TPO-RA	20 (23.3)	9 (20.0)
Other immunosuppressants	8 (9.3)	6 (13.3)
None	43 (50.0)	23 (51.1)

^aSafety Analysis Set.

ITP = immune thrombocytopenia; SD = standard deviation; TPO-RA = thrombopoietin receptor agonists; WHO = World Health Organization.

IST SYMPOSIUM ON INNOVATIVE THERAPIES IN HEMATOLOGY

Efficacy Endpoints:

Primary and All Platelet-related Secondary Endpoints Were Met*

Endpoint*	Efgartigimod	Placebo	P-value						
Primary endpoint									
Proportion with sustained platelet count response, n/N (%) [‡] ≥50×10 ⁹ /L in ≥4/6 visits during weeks 19-24, in the absence of intercurrent events [†]		2/40 (5.0%)	0.0316						
Key secondary endpoints									
Number of cumulative weeks of disease control, Mean $(SD)^{\ddagger}$ Number of weeks with platelet counts $\ge 50 \times 10^{9}$ /L	6.1 (7.66)	1.5 (3.23)	0.0009						
Sustained platelet count response, n/N (%) [§] \geq 50x10 ⁹ /L in \geq 4/6 visits during weeks 19-24	22/86 (25.6%)	3/45 (6.7%)	0.0108						
Number of visits with a WHO Bleeding Score \geq 1, Mean (SD)§	6.2 (6.39)	8.3 (8.01)	0.8287						
Durable sustained platelet count response, n/N (%)§ $\geq 50 \times 10^{9}$ /L in $\geq 6/8$ visits during weeks 17-24	19/86 (22.1%)	3/45 (6.7%)	0.0265						
hierarchical testing procedure, nominal <i>p</i> -values are always less than 0.05 for platelet-based endpoints. [†] Analyzed on Full Analysis Set. [‡] Chronic population. [§] Chronic + persistent population.									

id Health Orga

			Place	ebo			Efga	rtigimo	od			
All Patients	OVERALL	1 4 4				1-					18.9	(5.3, 30.7)
Splenectomy History	HISTORY OF SPLENECTOMY					-	•				18.8	(-1.9, 35.8)
	NO HISTORY OF SPLENECTOMY						•				18.9	(-1.0, 35.2)
Baseline ITP Therapies	ITP THERAPY AT BASELINE					-	•				16.4	(-4.0, 32.0)
ō.	NO ITP THERAPY AT BASELINE						•				21.5	(0.1, 39.6)
Baseline Platelet Count	<15x10 ⁹ /L					-	•				17.6	(-0.8, 34.8)
	≥15x10 ⁹ /L						•				18.6	(-5.0, 35.4)
Prior ITP Therapies	<3				-	_	•				17.1	(-11.1, 39.9)
	≥3					_	•				20.3	(4.4, 33.9)
Time Since Diagnosis	CHRONIC ITP					_	•				16.8	(3.1, 28.5)
	PERSISTENT ITP				-		•		<u></u>		42.5	(-14.6, 77.4)
Region	UNITED STATES						•				33.3	(-65.9, 75.5)
	JAPAN						•				40.0	(-30.3, 81.1)
	EU/EEA/EFTA					-	•				17.1	(0.7, 33.5)
	REST OF THE WORLD				-	-	• •				14.2	(-11.5, 35.0)
Age Group	18 - <65 YEARS					-	•				14.6	(-4.5, 27.9)
	65 - <75 YEARS							•			57.1	(14.0, 87.1)
	≥75 YEARS										(-)	-
Prior Rituximab	YES				-		•				18.7	(-11.0, 38.4)
	NO					-	•				19.0	(1.9, 34.1)
Prior TPO-RA	YES					-	•				14.7	(-5.1, 31.5)
	NO						•				26.3	(4.6, 42.1)
	-	100 -80) -60	-40	-20	Ó	20 40	60	80	100		
	Difference in Response Rate with 95% CI											
Efgartigimod Resulted in Targeted Reduction of IgG Levels*

Mean % Change from Baseline in Total IgG Levels over Time^{*†}

- Mean IgG levels decreased steadily over the first 4 weeks of treatment, which was sustained across time and aligned with platelet count responses
 - After the initial decrease in IgG, mean maximum reductions from baseline remained >60% throughout the trial

^{*}Full Analysis Set. [†]Errors bars are standard errors around the least squares (LS) means. IgG = immunoglobulin G; SE = standard error.

Efgartigimod Was Well-Tolerated in Patients With ITP and Consistent With Other Efgartigimod Studies¹⁻⁵

	Efgartigimod (n=86)	Placebo (n=45)
	Pá	atients with event, n (%)
≥1 TEAE	80 (93.0)	43 (95.6)
≥1 serious TEAE	7 (8.1)	7 (15.6)
≥1 TEAE leading to discontinuation of study drug	4 (4.7)	1 (2.2)
≥1 treatment-related TEAE according to PI	15 (17.4)	10 (22.2)
≥1 serious treatment-related TEAE according to PI	0	0
AESI: Any bleeding event	61 (70.9)	39 (86.7)
AESI: Any infection event	25 (29.1)	10 (22.2)
Infusion-related reaction event	10 (11.6)	5 (11.1)
	Mos	t common TEAEs, n (%)
Asthenia	6 (7.0)	0 (0.0)
Fatigue	4 (4.7)	1 (2.2)
Headache	14 (16.3)	6 (13.3)
Petechiae	13 (15.1)	12 (26.7)
Hypertension	5 (5.8)	0 (0.0)
Nausea	5 (5.8)	2 (4.4)
Haematuria	14 (16.3)	7 (15.6)
Purpura	7 (8.1)	4 (8.9)

AESI = adverse event of special interest (defined per protocol); ITP = immune thrombocytopenia; PI = principal investigator; TEAE = treatment-emergent adverse event.

1. Howard JF Jr, et al. Neurology. 2019;92(23):e2661-e2673. 2. Howard JF Jr, et al. Lancet Neurol. 2021;20(7):526-536. 3. Newland AC, et al. Am J Hematol. 2020;95:178-187. 4. Goebeler M, et al. Br J Dermatol. 2021. doi:10.1111/bjd.20782.

ADVANCE plus STUDY: Open Label Extension

» More @ EHA 2023, Frankfurt 8-10 June 2023

LONG-TERM SAFETY AND EFFICACY OF EFGARTIGIMOD IN PATIENTS WITH PRIMARY IMMUNE THROMBOCYTOPENIA: INTERIM RESULTS OF THE ADVANCE+ STUDY

Rilzabrutinib (oral, reversible, covalent inhibitor of BTK)

- The BTK pathway is critical for the FcYreceptor (FcYR)-signalling pathway in phagocytic and antigen presenting cells
- Inhibition of BTK would reduce macrophage phagocytosis of platelets but it might also accomplish significant immunosuppression with reduction of pathogenic antibody production

INTERAPIES IN HEMATOLOGY

ORIGINAL ARTICLE

Rilzabrutinib, an Oral BTK Inhibitor, in Immune Thrombocytopenia

Intrapatient dose escalation of oral rilzabrutinib over a period of 24 weeks

- starting dose: 200 mg once daily, maximum 400 mg bid

- rilzabrutinib had no effect on platelet aggregation
- Stable dose of steroids or TPO-RA were allowed

Characteristic	All Patients (N=60)	Patients with Starting Rilzabrutinib Dose of 400 mg Twice Daily (N=45)
Median age (range) — yr	50 (19-74)	49 (19–74)
Sex — no. (%)		
Male	26 (43)	18 (40)
Female	34 (57)	27 (60)
Median baseline platelet count (range) — ×10-3/mm3	15 (2-33)	15 (2-33)
Median duration of ITP (range) — yr†	6.3 (0.4-52.5)	6.1 (0.4-52.5)
Median no. of different previous ITP therapies (range) \ddagger	4 (1-17)	4 (1–17)
Previous splenectomy — no. (%)‡	15 (25)	11 (24)
Most common previous ITP therapies — no. (%)‡		
Glucocorticoid	55 (92)	42 (93)
Thrombopoietin-receptor agonist∫	35 (58)	24 (53)
Intravenous immune globulin	26 (43)	21 (47)
Rituximab	24 (40)	22 (49)
Fostamatinib	8 (13)	7 (16)

PRIMARY ENDPOINT: at least two consecutive platelet counts (separated by ≥ 5 days) of at least 50×10^{9/L} and an increase from baseline of at least 20×109/L without the use of rescue medication

Primary Platelet Response

Subgroup efficacy analysis

Treatment-related adverse events

Shown are the percentages of patients who met the primary end point of platelet response. Chronic immune thrombocytopenia (ITP) was defined as

Treatment-Related Adverse Events

Kuter D et al, NEJM 2022

Adverse events

Event	Adverse Events Due to Any Cause			Treatment-Related Adverse Events*				
	Any Grade	Grade 1	Grade 2	Grade 3 or 4	Any Grade	Grade 1	Grade 2	Grade 3 or 4
		number of patients (percent)						
Any adverse event	48 (80)	43 (72)	30 (50)	8 (13)†	31 (52)	27 (45)	15 (25)	0
Diarrhea	22 (37)	19 (32)	3 (5)	0	19 (32)	16 (27)	3 (5)	0
Nausea	21 (35)	18 (30)	3 (5)	0	18 (30)	16 (27)	2 (3)	0
Fatigue	12 (20)	10 (17)	2 (3)	0	6 (10)	5 (8)	1 (2)	0
Abdominal disten- tion	6 (10)	6 (10)	0	0	4 (7)	4 (7)	0	0
Vomiting	4 (7)	3 (5)	1 (2)	0	3 (5)	2 (3)	1 (2)	0

* Adverse events were reported after the first dose of rilzabrutinib. Relatedness of the adverse event to treatment was determined by the investigators. The treatment-related adverse events listed here are those that occurred in at least 5% of the patients.

† Eight patients had an adverse event of grade 3 or 4 that was due to any cause and that was considered by the investigators to be unrelated to rilzabrutinib treatment. Multiple events may have occurred in a single patient. These events included grade 3 anemia (in two patients); grade 3 abnormal alanine aminotransferase level, contusion, gastrointestinal hemorrhage, hematoma, ITP, myelofibrosis, and thrombocytopenia (in one patient each); and grade 4 Evans syndrome and thrombocytopenia (in one patient each).

Kuter D et al, NEJM 2022

ONGOING

Phase III Multicenter, Double-Blind, Randomized, Placebo-Controlled Trial of the Oral BTK Inhibitor Rilzabrutinib in Adults and Adolescents with Persistent or Chronic ITP

*Non-responder: platelet counts <30×109/L or <20×109/L above baseline on two consecutive visits.

"Primary endpoint: platelet counts ≥50×10°/L for ≥8 of the last 12 wk of the 24-wk blinded treatment period without rescue medication.

*Responder: platelet counts 250×10⁹/L or 230×10⁹/L and at least doubled from baseline at 250% of visits without rescue therapy during the last 8 wk of the open-label period.

1st SYMPOSIUM ON INNOVATIVE THERAPIES IN HEMATOLOGY Sutimlimab

- » Humanized mAb that inhibits C1s, preventing classical complement pathway activity
- » Inhibition of C1s prevents activation of C3 via the classical CP, leaving the lectin and alternative pathways intact

Safety and efficacy of classical complement pathway inhibition with sutimlimab in chronic immune thrombocytopenia

Broome C et al. Blood Adv 2023

Table 1. Patient demographic and baseline disease characteristics	cteristics
---	------------

Age, median (range) y	41.5 (27-66)
Sex, female, n (%)	9 (75.0)
Race, n (%)	
White	8 (66.7)
Black or African American	3 (25.0)
Asian	1 (8.3)
Weight, kg [n = 11], mean (range)	78.3 (57-114)
Disease duration at screening, y [n = 7], median (range)	4.7 (2.0-36.4)
Platelet count,* median (range), ×10 ⁹ /L	19 (1-57)
Number of prior treatments, median (range)	5.5 (2-10)
Prior treatment received, n (%)	
Rituximab	10 (83.3)
Corticosteroids	8 (66.7)
TPO-RA	
Romiplostim	8 (66.7)
Eltrombopag	8 (66.7)
Wig	7 (58.3)
Fostamatinib	2 (16.7)
Rilzabrutinib [†]	1 (8.3)
Prior splenectomy, n (%)	4 (33.3)

Summary: sutimlimab in ITP first data

- > 12 ITP pts : Median (range) prior ITP medications was 4 (2-10)
- ➤ 42% of patients responded
- > 4 (33%) patients achieved a platelet count ≥50x 10⁹/l on ≥70% of visits
- > NO significant SAE (no thombosis, no infectious, no death)

Role of BAFF and BAFF receptors in immunological diseases

- B cell activating factor belonging to the TNF family (BAFF) is a B cell survival factor essential for B cell maturation
- BAFF transmits a B cell survival signal important for B cell development <u>and interacts with three receptors on</u> <u>B cells</u>.

Involvement of BAFF in many diseases

 BAFF levels are elevated in a range of autoimmune disorders, including primary biliary cholangitis, SLE, rheumatoid arthritis, coeliac disease, Sjögren's syndrome, systemic sclerosis, myasthenia gravis and correlate with autoantibody titres Efficacy, safety and immunological profile of combining rituximab with belimumab for adults with persistent or chronic immune thrombocytopenia: results from a prospective phase IIb trial

Matthieu Mahévas,^{1,2,3} Imane Azzaoui,^{1,3*} Etienne Crickx,^{1,2,3*}

TIVE THERAPIES IN HEMATOLOGY

15 ITP R/R non splenectomized RTX 1000 mg (2 weeks apart) + Belimumab 10 mg/kg per 5 admn

At W52, 12 (80%) patients achieved an overall response, including ten (66.7%) with complete response

Hematologica 2021

Ianalumab

- » Ianalumab is a BAFF-R antibody
- » Ianalumab has two modes of action: a direct lysis of B cells by antibody-dependent cellular cytotoxicity, and BAFF receptor blockade that interrupts BAFF-mediated signalling for B-cell maturation, proliferation, and survival.
- » Studies in ITP and wAIHA are in development

RELAPSED/REFRACTORY TO STEROID

New drugs, new questions..

- TPO-RA switch: is it advisable to switch all 3 available drugs before switching to fostamatinib?
- After failure of one/two TPO-RA → fostamatinib -> but in case of failure or limited response is it advisabale to switch again to a TPO-RA? A different one?
- Is it possibile to combine fostamatinib & TPO-RA ? (regulatory gap)

Qualcosa è cambiato...

Vorrei che qualcosa cambiasse nei prossimi X anni...

Recommendations for diagnosis of primary ITP in children and adults

 The diagnosis of ITP is based principally on the exclusion of other causes of isolated thrombocytopenia using patient history, physical examination, blood count, and evaluation of the peripheral blood film (to exclude other hemato'-----' conditions, including hereditary thrombocyto and pseudothrombocytopenia). If therapy is ad tered, platelet count should be closely monitor response as a diagnostic aid.

Recommendations for subsequent therapy strategy

- 1. There are many medical therapy options with few AEs.
- Not all therapies are available in all countries; thus, the recommendations should be modified based on available resources and patient preference.
- Some medical options may require ongoing continued treatment.
- Up to one third of patients may remit in 1 year,¹¹³ and up to 80% may remit in 5 years.^{114,115} If possible, splenectomy should be deferred for ≥1 year to allow for remission.^{113,115}